Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(8): 5383-5392, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38353994

RESUMO

Although post-translational lipidation is prevalent in eukaryotes, its impact on the liquid-liquid phase separation of disordered proteins is still poorly understood. Here, we examined the thermodynamic phase boundaries and kinetics of aqueous two-phase system (ATPS) formation for a library of elastin-like polypeptides modified with saturated fatty acids of different chain lengths. By systematically altering the physicochemical properties of the attached lipids, we were able to correlate the molecular properties of lipids to changes in the thermodynamic phase boundaries and the kinetic stability of droplets formed by these proteins. We discovered that increasing the chain length lowers the phase separation temperature in a sigmoidal manner due to alterations in the unfavorable interactions between protein and water and changes in the entropy of phase separation. Our kinetic studies unveiled remarkable sensitivity to lipid length, which we propose is due to the temperature-dependent interactions between lipids and the protein. Strikingly, we found that the addition of just a single methylene group is sufficient to allow tuning of these interactions as a function of temperature, with proteins modified with C7-C9 lipids exhibiting non-Arrhenius dependence in their phase separation, a behavior that is absent for both shorter and longer fatty acids. This work advances our theoretical understanding of protein-lipid interactions and opens avenues for the rational design of lipidated proteins in biomedical paradigms, where precise control over the phase separation is pivotal.


Assuntos
60676 , Ácidos Graxos , Cinética , 60422 , Termodinâmica , Proteínas
2.
J Phys Chem Lett ; 14(45): 10113-10118, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37921693

RESUMO

The effects of CaCl2 and MgCl2 on the cloud point temperature of two different elastin-like polypeptides (ELPs) were studied using a combination of cloud point measurements, molecular dynamics simulations, and infrared spectroscopy. Changes in the cloud point for the ELPs in aqueous divalent metal cation solutions were primarily governed by two competing interactions: the cation-amide oxygen electrostatic interaction and the hydration of the cation. In particular, Ca2+ cations can more readily shed their hydration shells and directly contact two amide oxygens by the formation of ion bridges. By contrast, Mg2+ cations were more strongly hydrated and preferred to partition toward the amide oxygens along with their hydration shells. In fact, although hydrophilic ELP V5A2G3 was salted-out at low concentrations of MgCl2, it was salted-in at higher salt concentrations. By contrast, CaCl2 salted the ELP sharply out of solution at higher salt concentrations because of the bridging effect.


Assuntos
Elastina , Peptídeos , Elastina/química , Cloreto de Cálcio , Peptídeos/química , Amidas/química , Cátions/química , Cátions Bivalentes
3.
J Phys Chem Lett ; 13(3): 923-930, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35050629

RESUMO

Vibrational sum frequency spectroscopy (VSFS) and pressure-area Langmuir trough measurements were used to investigate the binding of alkali metal cations to eicosyl sulfate (ESO4) surfactants in monolayers at the air/water interface. The number density of sulfate groups could be tuned by mixing the anionic surfactant with eicosanol. The equilibrium dissociation constant for K+ to the fatty sulfate interface showed 10 times greater affinity than for Li+ and approximately 3 times greater than for Na+. All three cations formed solvent shared ion pairs when the mole fraction of ESO4 was 0.33 or lower. Above this threshold charge density, Li+ formed contact ion pairs with the sulfate headgroups, presumably via bridging structures. By contrast, K+ only bound to the sulfate moieties in solvent shared ion pairing configurations. The behavior for Na+ was intermediate. These results demonstrate that there is not necessarily a correlation between contact ion pair formation and stronger binding affinity.

4.
Nat Chem ; 14(1): 40-45, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725491

RESUMO

Weakly hydrated anions help to solubilize hydrophobic macromolecules in aqueous solutions, but small molecules comprising the same chemical constituents precipitate out when exposed to these ions. Here, this apparent contradiction is resolved by systematically investigating the interactions of NaSCN with polyethylene oxide oligomers and polymers of varying molecular weight. A combination of spectroscopic and computational results reveals that SCN- accumulates near the surface of polymers, but is excluded from monomers. This occurs because SCN- preferentially binds to the centre of macromolecular chains, where the local water hydrogen-bonding network is disrupted. These findings suggest a link between ion-specific effects and theories addressing how hydrophobic hydration is modulated by the size and shape of a hydrophobic entity.

5.
J Phys Chem B ; 125(30): 8484-8493, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34313130

RESUMO

Vibrational Stark shifts were explored in aqueous solutions of organic molecules with carbonyl- and nitrile-containing constituents. In many cases, the vibrational resonances from these moieties shifted toward lower frequency as salt was introduced into solution. This is in contrast to the blue-shift that would be expected based upon Onsager's reaction field theory. Salts containing well-hydrated cations like Mg2+ or Li+ led to the most pronounced Stark shift for the carbonyl group, while poorly hydrated cations like Cs+ had the greatest impact on nitriles. Moreover, salts containing I- gave rise to larger Stark shifts than those containing Cl-. Molecular dynamics simulations indicated that cations and anions both accumulate around the probe in an ion- and probe-dependent manner. An electric field was generated by the ion pair, which pointed from the cation to the anion through the vibrational chromophore. This resulted from solvent-shared binding of the ions to the probes, consistent with their positions in the Hofmeister series. The "anti-Onsager" Stark shifts occur in both vibrational spectroscopy and fluorescence measurements.


Assuntos
Eletrólitos , Água , Ânions , Cátions , Simulação de Dinâmica Molecular
7.
Methods Mol Biol ; 2251: 143-156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481237

RESUMO

It is now clear that organelles of a mammalian cell can be distinguished by phospholipid profiles, both as ratios of common phospholipids and by the absence or presence of certain phospholipids. Organelle-specific phospholipids can be used to provide a specific shape and fluidity to the membrane and/or used to recruit and/or traffic proteins to the appropriate subcellular location and to restrict protein function to this location. Studying the interactions of proteins with specific phospholipids using soluble derivatives in isolation does not always provide useful information because the context in which the headgroups are presented almost always matters. Our laboratory has shown this circumstance to be the case for a viral protein binding to phosphoinositides in solution and in membranes. The system we have developed to study protein-phospholipid interactions in the context of a membrane benefits from the creation of tailored membranes in a channel of a microfluidic device, with a fluorescent lipid in the membrane serving as an indirect reporter of protein binding. This system is amenable to the study of myriad interactions occurring at a membrane surface as long as a net change in surface charge occurs in response to the binding event of interest.


Assuntos
Membranas/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Fosfolipídeos/análise , Animais , Humanos , Dispositivos Lab-On-A-Chip , Bicamadas Lipídicas/química , Microfluídica/métodos , Fosfatidilinositóis/metabolismo , Fosfolipídeos/química , Ligação Proteica/fisiologia , Proteínas/metabolismo
8.
J Phys Chem B ; 125(2): 680-688, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33406822

RESUMO

Salt effects on the solubility of uncharged polymers in aqueous solutions are usually dominated by anions, while the role of the cation with which they are paired is often ignored. In this study, we examine the influence of three aqueous metal iodide salt solutions (LiI, NaI, and CsI) on the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) by measuring the turbidity change of the solutions. Weakly hydrated anions, such as iodide, are known to interact with the polymer and thereby lead to salting-in behavior at low salt concentration followed by salting-out behavior at higher salt concentration. When varying the cation type, an unexpected salting-out trend is observed at higher salt concentrations, Cs+ > Na+ > Li+. Using molecular dynamics simulations, it is demonstrated that this originates from contact ion pair formation in the bulk solution, which introduces a competition for iodide ions between the polymer and cations. The weakly hydrated cation, Cs+, forms contact ion pairs with I- in the bulk solution, leading to depletion of CsI from the polymer-water interface. Microscopically, this is correlated with the repulsion of iodide ions from the amide moiety.

10.
J Am Chem Soc ; 142(43): 18679-18686, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33078929

RESUMO

Herein, we show that Zn2+ binds to phosphatidylserine (PS) lipids in supported lipid bilayers (SLBs), forming a PS-Zn2+ complex with an equilibrium dissociation constant of ∼100 µM. Significantly, Zn2+ binding to SLBs containing more than 10 mol % PS induces extensive reordering of the bilayer. This reordering is manifest through bright spots of high fluorescence intensity that can be observed when the bilayer contains a dye-labeled lipid. Measurements using atomic force microscopy (AFM) reveal that these spots represent three-dimensional unilamellar blebs. Bleb formation is ion specific, inducible by exposing the bilayer to µM concentrations of Zn2+ but not Mg2+, Cu2+, Co2+, or Mn2+. Moreover, Ca2+ can induce some blebbing at mM concentrations but not nearly as effectively as Zn2+. The interactions of divalent metal cations with PS lipids were further investigated by a combination of vibrational sum frequency spectroscopy (VSFS) and surface pressure-area isotherm measurements. VSFS revealed that Zn2+ and Ca2+ were bound to the phosphate and carboxylate moieties on PS via contact ion pairing, dehydrating the lipid headgroup, whereas Mg2+ and Cu2+ were bound without perturbing the hydration of these functional groups. Additionally, Zn2+ was found to dramatically reduce the area per lipid in lipid monolayers, while Mg2+ and Cu2+ did not. Ca2+ could also reduce the area per lipid but only when significantly higher surface pressures were applied. These measurements suggest that Zn2+ caused lipid blebbing by decreasing the area per lipid on the side of the bilayer to which the salt was exposed. Such findings have implications for blebbing, fusion, oxidation, and related properties of PS-rich membranes in biological systems where Zn2+ concentrations are asymmetrically distributed.

11.
J Am Chem Soc ; 142(45): 19094-19100, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124825

RESUMO

Ion identity and concentration influence the solubility of macromolecules. To date, substantial effort has been focused on obtaining a molecular level understanding of specific effects for anions. By contrast, the role of cations has received significantly less attention and the underlying mechanisms by which cations interact with macromolecules remain more elusive. To address this issue, the solubility of poly(N-isopropylacrylamide), a thermoresponsive polymer with an amide moiety on its side chain, was studied in aqueous solutions with a series of nine different cation chloride salts as a function of salt concentration. Phase transition temperature measurements were correlated to molecular dynamics simulations. The results showed that although all cations were on average depleted from the macromolecule/water interface, more strongly hydrated cations were able to locally accumulate around the amide oxygen. These weakly favorable interactions helped to partially offset the salting-out effect. Moreover, the cations approached the interface together with chloride counterions in solvent-shared ion pairs. Because ion pairing was concentration-dependent, the mitigation of the dominant salting-out effect became greater as the salt concentration was increased. Weakly hydrated cations showed less propensity for ion pairing and weaker affinity for the amide oxygen. As such, there was substantially less mitigation of the net salting-out effect for these ions, even at high salt concentrations.

12.
Nat Chem ; 12(9): 814-825, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32747754

RESUMO

Phase separation of intrinsically disordered proteins (IDPs) is a remarkable feature of living cells to dynamically control intracellular partitioning. Despite the numerous new IDPs that have been identified, progress towards rational engineering in cells has been limited. To address this limitation, we systematically scanned the sequence space of native IDPs and designed artificial IDPs (A-IDPs) with different molecular weights and aromatic content, which exhibit variable condensate saturation concentrations and temperature cloud points in vitro and in cells. We created A-IDP puncta using these simple principles, which are capable of sequestering an enzyme and whose catalytic efficiency can be manipulated by the molecular weight of the A-IDP. These results provide a robust engineered platform for creating puncta with new, phase-separation-mediated control of biological function in living cells.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Sequência de Aminoácidos , Linhagem Celular , Difusão Dinâmica da Luz , Escherichia coli/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Peso Molecular , Mutagênese , Proteômica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Temperatura de Transição
13.
J Am Chem Soc ; 142(30): 13003-13010, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32687699

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PIP2) has a significantly lower mobile fraction than most other lipids in supported lipid bilayers (SLBs). Moreover, the fraction of mobile PIP2 continuously decreases with time. To explore this, a bilayer unzipping technique was designed to uncouple the two leaflets of the SLB. The results demonstrate that PIP2 molecules in the top leaflet are fully mobile, while the PIP2 molecules in the lower leaflet are immobilized on the oxide support. Over time, mobile PIP2 species flip from the top leaflet to the bottom leaflet and become trapped. It was found that PIP2 flipped between the leaflets through a defect-mediated process. The flipping could be completely inhibited when holes in the bilayer were backfilled with bovine serum albumin (BSA). Moreover, by switching from H2O to D2O, it was shown that the primary interaction between PIP2 and the underlying substrate was due to hydrogen bond formation, which outcompeted electrostatic repulsion. Using substrates with fewer surface silanol groups, like oxidized polydimethylsiloxane, led to a large increase in the mobile fraction of PIP2. Moreover, PIP2 immobilization also occurred when the bilayer was supported on a protein surface rather than glass. These results may help to explain the behavior of PIP2 on the inner leaflet of the plasma membrane, where it is involved in attaching the membrane to the underlying cytoskeleton.

16.
Nat Nanotechnol ; 15(1): 73-79, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844288

RESUMO

Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrated that PAH[4]s can form, through lateral diffusion, clusters in lipid membranes that provide synergistic membrane-spanning paths for a rapid and selective water permeation through water-wire networks. Quantitative transport studies revealed that PAH[4]s can transport >109 water molecules per second per molecule, which is comparable to aquaporin water channels. The performance of these channels exceeds the upper bound limit of current desalination membranes by a factor of ~104, as illustrated by the water/NaCl permeability-selectivity trade-off curve. PAH[4]'s unique properties of a high water/solute permselectivity via cooperative water-wire formation could usher in an alternative design paradigm for permeable membrane materials in separations, energy production and barrier applications.


Assuntos
Nanoestruturas/química , Peptídeos/química , Água/química , Aquaporinas/química , Calixarenos/química , Membranas Artificiais , Simulação de Dinâmica Molecular , Permeabilidade , Fenóis/química
17.
Nat Nanotechnol ; 14(12): 1129-1134, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740796

RESUMO

The ability of cells or cell components to move in response to chemical signals is critical for the survival of living systems. This motion arises from harnessing free energy from enzymatic catalysis. Artificial model protocells derived from phospholipids and other amphiphiles have been made and their enzymatic-driven motion has been observed. However, control of directionality based on chemical cues (chemotaxis) has been difficult to achieve. Here we show both positive or negative chemotaxis of liposomal protocells. The protocells move autonomously by interacting with concentration gradients of either substrates or products in enzyme catalysis, or Hofmeister salts. We hypothesize that the propulsion mechanism is based on the interplay between enzyme-catalysis-induced positive chemotaxis and solute-phospholipid-based negative chemotaxis. Controlling the extent and direction of chemotaxis holds considerable potential for designing cell mimics and delivery vehicles that can reconfigure their motion in response to environmental conditions.


Assuntos
Células Artificiais/metabolismo , Enzimas Imobilizadas/metabolismo , Lipossomos/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Catalase/metabolismo , Quimiotaxia , Humanos , Movimento (Física) , Fosfolipídeos/metabolismo , Urease/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(32): 15784-15791, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337677

RESUMO

Aqueous two-phase system (ATPS) formation is the macroscopic completion of liquid-liquid phase separation (LLPS), a process by which aqueous solutions demix into 2 distinct phases. We report the temperature-dependent kinetics of ATPS formation for solutions containing a monoclonal antibody and polyethylene glycol. Measurements are made by capturing dark-field images of protein-rich droplet suspensions as a function of time along a linear temperature gradient. The rate constants for ATPS formation fall into 3 kinetically distinct categories that are directly visualized along the temperature gradient. In the metastable region, just below the phase separation temperature, Tph , ATPS formation is slow and has a large negative apparent activation energy. By contrast, ATPS formation proceeds more rapidly in the spinodal region, below the metastable temperature, Tmeta , and a small positive apparent activation energy is observed. These region-specific apparent activation energies suggest that ATPS formation involves 2 steps with opposite temperature dependencies. Droplet growth is the first step, which accelerates with decreasing temperature as the solution becomes increasingly supersaturated. The second step, however, involves droplet coalescence and is proportional to temperature. It becomes the rate-limiting step in the spinodal region. At even colder temperatures, below a gelation temperature, Tgel , the proteins assemble into a kinetically trapped gel state that arrests ATPS formation. The kinetics of ATPS formation near Tgel is associated with a remarkably fragile solid-like gel structure, which can form below either the metastable or the spinodal region of the phase diagram.


Assuntos
Anticorpos Monoclonais/análise , Água/química , Coloides/química , Cinética , Espalhamento de Radiação , Soluções , Temperatura , Fatores de Tempo , Imagem com Lapso de Tempo
19.
J Am Chem Soc ; 141(17): 6930-6936, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31010283

RESUMO

The anomalously high mobility of hydroxide and hydronium ions in aqueous solutions is related to proton transfer and structural diffusion. The role of counterions in these solutions, however, is often considered to be negligible. Herein, we explore the impact of alkali metal counter cations on hydroxide solvation and mobility. Impedance measurements demonstrate that hydroxide mobility is attenuated by lithium relative to sodium and potassium. These results are explained by ab initio molecular dynamics simulations and experimental vibrational hydration shell spectroscopy, which reveal substantially stronger ion pairing between OH- and Li+ than with other cations. Hydration shell spectra and theoretical vibrational frequency calculations together imply that lithium and sodium cations have different effects on the delocalization of water protons donating a hydrogen bond to hydroxide. Specifically, lithium leads to enhanced proton delocalization compared with sodium. However, proton delocalization and the overall diffusion process are not necessarily correlated.

20.
J Am Chem Soc ; 141(16): 6609-6616, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30919630

RESUMO

When a mixture of two salts in an aqueous solution contains a weakly and a strongly hydrated anion, their combined effect is nonadditive. Herein, we report such nonadditive effects on the lower critical solution temperature (LCST) of poly( N-isopropylacrylamide) (PNiPAM) for a fixed concentration of Na2SO4 and an increasing concentration of NaI. Using molecular dynamics simulations and vibrational sum frequency spectroscopy, we demonstrate that at low concentrations of the weakly hydrated anion (I-), the cations (Na+) preferentially partition to the counterion cloud around the strongly hydrated anion (SO42-), leaving I- more hydrated. However, upon further increase in the NaI concentration, this weakly hydrated anion is forced out of solution to the polymer/water interface by sulfate. Thus, the LCST behavior of PNiPAM involves competing roles for ion hydration and polymer-iodide interactions. This concept can be generally applied to mixtures containing both a strongly and a weakly hydrated anion from the Hofmeister series.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...